From 1 - 2 / 2
  • The geological structure of southwest Australia comprises a rich, complex record of Precambrian cratonization and Phanerozoic continental breakup. Despite the stable continental cratonic geologic history, over the past five decades the southwest of Western Australia has been the most seismically active region in continental Australia though the reason for this activity is not yet well understood. The Southwest Australia Seismic Network (SWAN) is a temporary broadband network of 27 stations that was designed to both record local earthquakes for seismic hazard applications and provide the opportunity to dramatically improve the rendering of 3-D seismic structure in the crust and mantle lithosphere. Such seismic data are essential for better characterization of the location, depth and attenuation of the regional earthquakes, and hence understanding of earthquake hazard. During the deployment of these 27 broadband instruments, a significant earthquake swarm occurred that included three earthquakes with local magnitude (MLa) ≥ 4.0, and the network was supplemented by an additional six short-term nodal seismometers at 10 separate sites in early 2022, as a rapid deployment to monitor this swarm activity. The SWAN experiment has been continuously recording since late 2020 and will continue into 2023. These data are archived at the FDSN recognized Australian Passive Seismic (AusPass) Data center under network code 2P and will be publicly available in 2025. <b>Citation:</b> Meghan S. Miller, Robert Pickle, Ruth Murdie, Huaiyu Yuan, Trevor I. Allen, Klaus Gessner, Brain L. N. Kennett, Justin Whitney; Southwest Australia Seismic Network (SWAN): Recording Earthquakes in Australia’s Most Active Seismic Zone. <i>Seismological Research Letters </i><b>2023</b>;; 94 (2A): 999–1011. doi: https://doi.org/10.1785/0220220323

  • <div>The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. In this study, we collected a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon to investigate the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000-2900 Ma, 2825-2800 Ma, and ca. 2730-2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infracrustal and/or drip-tectonic settings. While this process of crust formation and evolution is not necessarily restricted to a specific geodynamic system, we find limited direct evidence that subduction-like processes formed a major tectonic component, aside from re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these 'rift-expansion' and 'craton margin' crustal growth process led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.</div> This Abstract/Poster was submitted to & presented at the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)